The Uzawa–HSS method for saddle-point problems
نویسندگان
چکیده
منابع مشابه
SADDLE POINT VARIATIONAL METHOD FOR DIRAC CONFINEMENT
A saddle point variational (SPV ) method was applied to the Dirac equation as an example of a fully relativistic equation with both negative and positive energy solutions. The effect of the negative energy states was mitigated by maximizing the energy with respect to a relevant parameter while at the same time minimizing it with respect to another parameter in the wave function. The Cornell pot...
متن کاملAn interior point method for constrained saddle point problems
We present an algorithm for the constrained saddle point problem with a convexconcave function L and convex sets with nonempty interior. The method consists of moving away from the current iterate by choosing certain perturbed vectors. The values of gradients of L at these vectors provide an appropriate direction. Bregman functions allow us to define a curve which starts at the current iterate ...
متن کاملOn generalized SSOR-like iteration method for saddle point problems
In this paper, we study the iterative algorithms for saddle point problems(SPP). We present a new symmetric successive over-relaxation method with three parameters, which is the extension of the SSOR iteration method. Under some suitable conditions, we give the convergence results. Numerical examples further confirm the correctness of the theory and the effectiveness of the method. Key–Words: i...
متن کاملA note on GPIU method for generalized saddle point problems
In this note, the generalized parameterized inexact Uzawa method, abbreviated as the GPIU method, for solving the generalized saddle point problems with symmetric positive semi-definite (2,2) block is studied. The convergence of the method is established, which is an extension of the results obtained in a recent paper by Zhou and Zhang (2009) [22]. Crown Copyright 2013 Published by Elsevier Inc...
متن کاملGeneral constraint preconditioning iteration method for singular saddle-point problems
For the singular saddle-point problems with nonsymmetric positive definite (1, 1) block, we present a general constraint preconditioning (GCP) iteration method based on a singular constraint preconditioner. Using the properties of the Moore-Penrose inverse, the convergence properties of the GCP iteration method are studied. In particular, for each of the two different choices of the (1, 1) bloc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics Letters
سال: 2014
ISSN: 0893-9659
DOI: 10.1016/j.aml.2014.06.018